
The inverse scattering problem for a reflectional system

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1976 J. Phys. A: Math. Gen. 9 217

(http://iopscience.iop.org/0305-4470/9/2/005)

Download details:

IP Address: 171.66.16.88

The article was downloaded on 02/06/2010 at 05:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/9/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


G ~ . ,  vol. 9, No. 2. 1976. Printed in Great Britain. @ 1976 iwjk Matb. 

inverse scattering problem for a reflectional system 

L Y Shih 
National Research Council, Ottawa, Canada KIA OR6 

Received 2 June 1975, in final form 12 September 1975 

AMCL In this paper, the general solution to the inverse scattering problem for a 
reflectional system is formulated. Two families of eigenfunctions, corresponding to the 
continuous and discrete spectra, are introduced to transform the Gel’fand-Levitan integral 
eqation.to a system of N +  1 equations. Making use of the available soliton solution, it is 
shown that the inverse scattering problem can be reduced to one of solving the eigenfunc- 
tion for a continuous spectrum only. In addition, the properties of these eigenfunctions are 
also investigated. 

bmnt years there has been considerable interest in certain classes of nonlinear 
pvtlal differential equations which describe a wide variety of physical models 
l4blwitz er a1 1973, Hirota 1973, Kingston and Rogers 1975, McLaughlin 1975). 
h u g h  transformation these equations can be associated with the linear Schrodinger 
operatorin an inverse manner. The inverse scattering method may thus be employed to 
&these initial-value problems. 

During the past two decades, the inverse problem of the Schrodinger operator has 
h extensively investigated by numerous authors. In particular, Gel’fand and 

(1955) reduced this problem to a linear integral equation. Kay and Moses 
(19%) treated the reflectionless system, and the N-soliton solution was thus obtained 
Rfoota 1971). Ablowitz and Newell (1973) investigated the asymptotic behaviour of 
hhtion for a system with continuous spectrum. 

in the present paper, the general solution to the inverse scattering problem which 
?the entire spectrum is formulated. Two families of eigenfunctions, correspond- 
?’the continuous and discrete spectra, are introduced to transform the Gel’fand- 
h a n  hRW1 equation to a system of N +  1 equations. Making use of the available 
an solution, these N +  1 equations can be solved to yield one linear integral 
CQnaQonforthe eigenfunction pertaining to continuous spectrum only. This equation 
qbeemPloyed to investigate the interaction of oscillatory waves and solitons. 

t+ remarks 

L q E C h l ,  we shall briefly outline some of the previous results, which will be 
-toin this paper. Let us consider the inverse scattering problem 

k -k ( V+ A’)+ = 0 (2.1) 
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subjecl to the condition that V vanishes at infinity. This implies the asmpw 
conditions 

(2.2) $(x, A )  = A(A, t) eik + H A ,  t )  e-'"". 

where the eigenvalue A may be either real or imaginary. Here V(x,  t) also depenQ 
parametrically on t as governed by a nonlinear partial differential equation 

L"l=O, (23) 

where L is a nonlinear partial differential operator which can be associated 
linear Schriidinger operator through a certain transformation. The coefficients A(& rj 
and B(A, t )  may be determined from equation (2.3). 

Suppose the function F(x, y d x )  exists, having continuous partial derivatjvesoffirsr 
and second orders, such that (Agranovich and Marchenko 1963) 

$ ( x , A ;  t)=A(A, t)(eik-[-l F(x, y ;  t)e-i"ydy), 

where A(A, t )  is the normalization coefficient. Then, the solution for the inverse 
scattering problem can be related to F by 

d 
V(X, t )  = ~ - F ( x ,  X; t ) .  

dx 
(2.3 

Gel'fand and Levitan (1955) have reduced this problem to a linear integral equation 

(2.6) 

where R is a known function determined by the asymptotic behaviour of Ib: "be 
function R can be represented in terms of the reflection coefficient (Kay and M m  
1956b): 

N W 

R ( x  + y)  =- I b(k, t )  e-ik(x+y) dk + 1 cE(t) (U! 
2T n = l  

Here the reflection coefficient may be defined as 

b(A, t )  = H A ,  t)/A(A, t ) ,  

with residues at the simple poles A = iK, denoted by ici(t). 

(?.SI 

3. Generalsolution 

For a reflectional system, we assume that the solution of the Gel'fand-Levhninte@ 
equation, for y d x ,  has the form 

(3.1) 1 "  N 
&, y) =-I H(k, x) e-iky dk + 1 G,(x) e*ny 

2n --Q) n = l  

where the eigenfunctions H ( k , x )  are complex, while G J X )  are real, and &'" 
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,gePression (3.1) into equations (2.4) and (2.5), we obtain the expressions slestizuti 
&$ad v: 

d l "  N 
V(x)  =2-(- I H(k,  x) e-ikr dk + C Gn(x) e..). 

dx 2i7r n = l  

w&tituting expressions (3.2) and (3.3) into equation (2.1), we have 

d2 e-ikx 

dke +i(A - k )  (-+ dx2 V+ k2)H(k ,  x) 

si se^, are arbitrary, one may expect that 

($+ V+kZ)H(k ,  x) = 0, (3.4) 

(3.5) 

Inorder to solve the eigenfunctions H(k,  x) and Gn(x), we shall substitute expres- 
h ( 3 . 1 )  and (2.7) into equation (2.6). Let us fist evaluate the integral 

/-: F(x,z)R(y+z)dz.  (3.6) 

&the step function, expressed as 

mayhintrodwed to transform an indefinite integral into a definite one, we have 
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Equation (2.6) then becomes 
(0 H(k’, x) 1 I dk e-ikY[H(k, x)+b(k, t )  e-ik(& s-0 lim -m dk‘ E -i(k,+ k) 

27r 4 

Gn(x) + 1 - ex2 - I)] 

+ C -eKd- Gm(x) 

n = j  K, -1k 

n-1  IC,, -ik 
+ N e “ ~ y [ G n ( x ) + c ~ ( f ) e ‘ i ( ~ ~  dk- H(k x)e-ik 

l)] = 0. 
,+I K,+K,, 

TRis gives 

OD H(k’, x) e-ik’” G (x) 
, , = I  IC,, -ik 

dk‘- 1 +eK.’) (3.7) 
1 H(k, x) = b(k, t )  e-ik( 1 --lim I 27~c-0 -a e-i(k‘+k) 

and 

(3.8) 

Due to the composite expression of R(x + y), given by expression (2.7), the exad 
solution of the Gel’fand-Levitan integral equation for a non-zero reflection coefficient 
is hardly attainable. This integral equation has been transformed to a system of N+1 
equations so that the problem may be tackled as shown in § 4. 

’liheorem 1. Equation (3.4) is satisfied by H(k, x) as defined in equation (3.71, and 
equation (3.5) is satisfied by G,(x) as defined in equation (3.8), while V(x) isgiven$ 
expression (3.3). 

Proof. By expression (3.2), equations (3.7) and (3.8) may be expressed simply as 

(3.91 

and 

Gn ( x )  = cn ( t ) $ n  (x), (3.101 

where the asterisk denotes the complex conjugate, $,, denotes $(x, -kh and 
A(%, t )  = c,,(t). Equation (2.1) shows that $*(x,  k) satisfies the differential equation 

$:+(V+k*)$*=O (3.11) 

and $,,(x) satisfies 
(3.11) 

By expression (3.91, equation (3.1 1) leads to equation (3.4). Similarly, by exPressioo 
(3.10hequation (3.12)leads to equation (3.5). This completes the proof of theorem’. 

For a reflectionless system, we consider b(k, t )  = 0. In this case, our resu1’ are 
reduced to those obtained by Kay and Moses (1956a). m e  exact solution is known’ 

($n ).U + ( v- K 3 $,, = 0. 
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liton solution (Hirota 1971, Wadati and Toda 1972). It is found that 

eKnx(1 1 q 2 ( i l  . . . i r )  i = i i  fi qniEi). (3.13) 
r = l  N - I C ,  Gn (XI = L\ 

i # n  

H ~ ,  the symbols are defined as 

N 
A = I +  1 1 q2(il . . . i,) f j  E~ 

r = l  Nc,  i = i i  

( 3 . 1 4 ~ )  

(3.14b) 

( 3 . 1 4 ~ )  

(3.14d) 

&re ,& indicates summation over all possible combinations of T elements (desig- 
&ai,, i2 , .  . . , i,) taken from N, and (r) indicates the product of all possible pairs out 
ofrelements. It is understood that 77 is unity for r = 1. 

A Ieteraction of waves 

”Iheorem 2. The solution for the inverse scattering problem may be expressed as 

pmof. If we multiply equation (3.7) by H, - ikH, and integrate with respect to k, we get 
oneequation. If we differentiate equation (3.7) with respect to x, multiply the resulting 
equation by H, and then integrate with respect to k, we get another equation. Due to 
symmetry Of the double integrals in these two equations, by subtraction we obtain 
d “  - dij, He-ikdk 

‘wemultiply equation (3.8) by (GJX + K,G,, and sum over n, we get one equation. If 
differentiate equation (3.8) with respect to x, multiply the resulting equation by 6, 

aadthensumover n, we get another equation. Since the terms with double summation 
Inthese two equations are symmetrical in m and n, by subtraction we obtain 
‘ d  1 -(G,, er”’) 

8-1 dX 

(4.3) 
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(4.1). This completes the proof of theorem 2. 

Expression (4.1) represents the linear decomposition of V(x, t ) ;  the integral 
ponds to a continuous spectrum while the sum corresponds to a discrete spectnrm. 
However, due to nonlinear interaction, the eigenfunctions H( k, x) and G,(~) an 
mutually dependent as indicated by equations (3.7) and (3.8). For a genera] p,,t,h 
with an arbitrary initial condition, neither b(k, t) nor c,(t) should be 

In an attempt to solve the system of equations (3.7) and ( 3 8 ,  we express quah 
(3.8) in the matrix form 

(4.4) 

Then, substituting equations (4.2) and (4.3) into expressions (3.3) yields em asioa 

(S + l)r = 0, 

where S denotes the square matrix, and r and Q denote the column matrices, with 
elements defined as 

r, = G, (x) ez2, 

It can be shown that elements of the inverse matrix ( S  + I)-' may be expressed as 

i#mn 

for m # n, while the diagonal elements are 

i +n  

Thus, by equation (4.4) we have 

Substituting expression (4.6) into equation (3.7), we eventually obtain an 
equation for H(k,  x). 

where the kernel, expressed as 

0 is symmetric in the sense that k and k' are interchangeable, and the absolute term 
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N 
f(k) = (b(k, f))1/2 e-ib( 1 - n = l  exp(K”x)(Gn(x))bs~). ~ , - i k  

223 

(4.9) 

mwe have reduced the system of Nt 1 equations to a single integral equation. 
squat ion shows merit over the Gel’fand-Levitan equation because the space and 
*pariabIes appear only parametrically throughout. Once H(k, x) is solved, the 
*dons Gn(x) can readily be evaluated from expression (4.6). Our interest is to 
& the class of reflection coefficients for solutions of H ( k ,  x) to exist. The 
Mnmficient b(k, t ) ,  and thus the eigenfunction H(k, x), are assumed to possess 
bmwing basic properties: 

(a) they are Holder continuous; 
(6) they have N simple poles on the imaginary axis; 
(c) b(-k)= b*(k) and H(-k)  = P ( k )  by analytic continuation; 

(e) they vanish at infinity more rapidly than 1kl-l. 

id) lb(k)] 6 1; 

~operties (d) and (e )  imply the finite condition 
m I-, b ( k ,  t)l dk. 

ii” 3. If the integral 
m lo b(k, t)l dk 

khdd, then the absolute term of the integral equation (4.7), as given by expression 
HJLk quadratically summa e. 

M. Byexpressions (3.13) and (3.14), it can be shown that 

is a finite number, usually of the order of unity. Thus, we have 
m CO 

If(k)12 dk < K 2  Ib(k, t)l dk. i, im 
$prop.rtY (c), this completes the proof of theorem 3 (Mikhlin 1960). 

fnheabsence of soliton, by property (c) ,  the integral equation (4.7) becomes simply 

(4.10) 
‘hi)&n with equation (4.10), the additional terms in expressions (4.8) and (4.9) 
‘Bp““!Y represent the effect of interaction due to solitons. To shed light on some 

“%ht, one may investigate the reflectional system with only one soliton. In 
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this case, the integral equation (4.7) may be expressed in the form 

(4.11) 
where the kernel is given as 

Note that the kernel has the property 
L(k, k’) = K*(k’, k).  
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